CROWD-BASED ILLUMINANCE MAPS:

COMPARING DAYLIGHT PERCEPTION IN VIRTUAL REALITY TO EMPIRICAL METRICS

Muhammad Hegazy
PhD Candidate, Architectural & Urban Morphology Lab,
Osaka University

hegazy_muhammad@arch.eng.osaka-u.ac.jp

Prof. Hirokazu Abe thesis director

Dr. Kensuke Yasufuku thesis co-director

HOW CAN DAYLIGHT PERFORMANCE METRICS BE MORE USER-ORIENTED?

DAYLIGHT PERFORMANCE

USER-CENTERED DESIGN

IMMERSIVE VIRTUAL REALITY

Daylighting Impact on Buildings' Occupants

State daylight as 1st need in workplace

Up to 40%

Gain in productivity

46 mins

More sleep per night

(i-buildmagazine.com, 2019)

1.(Sustania, 2012) 2.(Barrett, 2015) 3.(Global Human Spaces Report, 2015) 4.(Boubekri, 2014)

The dilemma of Daylight Quantitative Metrics

- Physically accurate.
- Essential for design stage.

- Don't reflect occupant behavior.
- "Generic" user models.

Perceptual qualities of daylighting

Assessing daylight based on human perception is as important as quantitative measurements.

(Paredes, 2016)

Immersive Virtual Environments (IVEs) are adequate to investigate human perception of daylighting.

(Chamilothori, 2018)

Immersive

full visual field, sensation of presence.

Virtual

mobile, flexible, safe, economic

Environment

realistic, scale-free, customizable

Limitations on current studies

Lack of Richness

- simple, small scale spaces.
- focus on office spaces only.

Lack of Locomotion

- one standing point.
- Lack of interaction (customization)

Lack of Interactivity

- Questionnaires dependent.
- No integrated challenges/tasks.

How to improve outputs of daylight perception in IVEs against quantitative metrics?

Photorealistic

Explorable

Large-Scale

Customizable

Gamified

Crowd-Based Illuminance Maps

Experiment case study

Kimbell Art Museum, Fortworth TX

- By Louis Kahn.
- Unorthodox daylighting qualities.

(kimbellart.org, 2019)

Experiment case study

Experiment workflow

Experiment workflow

Generating crowd-illuminance maps

Users snapshots Crowd camera map

Generating crowd-illuminance maps

Crowd based illuminance

Illuminance map (VELUX Daylight Visualizer)

Image-based luminosity mean values (9 AM)

Correlation between user perception and mean luminosity for a given spot at 9AM

Future research challenges

Why mixed perception happen?

Overcoming VR limitations?

Consistency with further daylight metrics?

A unified metric that consider both subjective and quantitative qualities of daylighting

October 9th-10th 2019, Paris

THANK YOU

Muhammad Hegazy
PhD Candidate at Architectural & Urban Morphology Lab,
Osaka University

hegazy_muhammad@arch.eng.osaka-u.ac.jp

